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Abstract: Soil degradation is a significant threat to agricultural systems and contemporary
societies worldwide, especially in the context of climate change. Proper management of
agricultural systems is a priority for maintaining food security and achieving sustainable
development. It is therefore important to assess the efficacy of different interventions
that are designed to improve the quality of agricultural soils. Measurements of physical,
chemical, and biological indicators of soil quality can be used to examine the efficacy of
strategies or methods that were designed to prevent soil degradation. We measured seven
physicochemical indicators of soil quality at a representative experimental plot of nectarines
in the province of Zaragoza (Spain) over three years (2020–2023) and compared the effect
of a multifunctional cover crop (LivinGro® MCC, Basel, Switzerland) with conventional
treatment (control) on soil quality. Soil samples were collected every two months from the
treelines and inter-rows (paths for farming vehicles). In general, the MCC zones in the
treelines and inter-rows had better soil health, especially in key indicators such as basal soil
respiration, organic matter, nitrogen, and porosity. Climatic variability, especially seasonal
differences in rainfall, also affected multiple soil indicators. During many sample periods,
the MCC zones of the treelines and inter-rows had significantly increased soil organic matter,
basal respiration, total nitrogen, nitrate, total porosity, and available water content, but
the MCC and control zones had no significant differences in bulk density. The differences
between the MCC zones and control zones, especially in basal soil respiration, were
greater during the wet seasons. Our results indicate that the LivinGro® MCC prevented
degradation of agricultural soils in a region with a continental Mediterranean climate.

Keywords: sustainable agriculture; cover crop; soil properties; degradation; climate change

1. Introduction
Soil is a natural resource that is fundamental to food security and mitigation of climate

change because it supports plant growth, harbors diverse beneficial microorganisms, and
is a major reservoir of organic carbon [1]. However, the increasing world population and
inappropriate soil management practices have threatened soils worldwide because they
have led to degradation of the physical, chemical, biological, and ecological activities
of soils [2]. Sustainable management of agricultural systems and soils are significant
challenges, especially because of climate change and agricultural intensification [3]. Thus,
there is increasing interest in using cover crops to improve soil health and increase the
resilience of agricultural systems [4].
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Specifically, several studies that investigated the effect of introducing cover crops
between the rows of different crop plants found that they mitigated various agronomic
and environmental problems [5]. In addition, cover crops that are planted between the
main crop cycles throughout the agricultural season can improve soil quality and health [6].
Among the many advantages of cover crops, one of the major benefits is that they reduce
soil erosion [7]. A benefit provided by multifunctional cover crops (MCC), such as the
LivinGro® MCC developed by Syngenta, is that it can increase the fertility and amount of
organic matter in soils [8,9]. A third benefit is that cover crops can act as physical barriers
that prevent or limit the spread of weeds [10]. Fourth, cover crops can increase microbial
biodiversity in the soil [11]. Finally, cover crops can improve soil structure, water balance,
and nutrient retention, all of which are fundamental for the long-term sustainability of
agricultural systems [6,7,12].

Despite the many benefits of cover crops, agricultural regions have not yet fully
adopted the use of cover crops [13]. This is largely due to a lack of understanding of the
scientific studies that documented their long-term benefits, and the limited knowledge of
how various factors, such as local soil and climatic conditions, affect these benefits [14].
Thus, it is necessary to further examine changes of the main indicators of soil quality after
the establishment of cover crops on agricultural plots [15]. Many indicators are used to
evaluate soil quality. For example, soil organic matter (SOM) is a key determinant of soil
fertility, and it also promotes microbial activity and acts as a source of essential plant
nutrients [16]. Basal soil respiration (BSR) is another important indicator that determines
microbial activity based on CO2 release and is a key process in nutrient mineralization and
decomposition of SOM [17]. Total nitrogen (TN) is a key indicator of soil fertility [18], and
nitrate (NO3

−) is the form of nitrogen most readily taken up by plants and is therefore a key
indicator of crop growth and development [19]. Total porosity (TP) provides fundamental
information about air and water circulation in the soil [20]. Bulk density (BD) provides
information on the degree of soil compaction, a property that is associated with water
infiltration and root growth [21]. Finally, the available water content (AWC) summarizes the
water retention capacity of soil and indicates the accessibility of this water to vegetation [22].

The main objective of this paper is to examine the effect of the LivinGro® MCC on
soil quality indicators and properties in a specific agricultural region of Spain that has a
continental Mediterranean climate. We therefore performed a detailed analysis of changes
in the properties of soil over time to assess the benefits of a cover crop over conventional
techniques. Although many previous studies have examined the effects of cover crops,
the present study goes a step further by analyzing the effect of a MCC in the inter-rows
(paths for farming vehicles) between rows of nectarine trees. Another important aim was
to provide detailed descriptions of the changes in soil indicators over time, including
variations at the seasonal level and annual level, a key element of soil dynamics in the
Mediterranean region.

2. Materials and Methods
2.1. Experimental Area

All experiments were performed in the municipality of ‘Almunia de Doña Godina’
(southwest of the city of Zaragoza), which is located at 389 m a.s.l. in the Ebro River Valley
and in the autonomous community of Aragón (Figure 1), 41◦29′48.35′ N, 1◦16′59.21′ W.
This region is located in a transition area between the Ebro Depression and the foothills of
the Sistema Ibérico and is characterized by a gentle topography, with an average gradient
of 4%. It has soil-sedimentary formations of limestone crusts, with a silty loam texture
(sands: 28%; silts: 62%; clays: 10%). The plot is cultivated with nectarines, a fruit of great
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agricultural importance in this region due to its high commercial demand and the favorable
conditions for cultivation in this type of soil and climate.

Land 2025, 14, x FOR PEER REVIEW 3 of 18 
 

gradient of 4%. It has soil-sedimentary formations of limestone crusts, with a silty loam 

texture (sands: 28%; silts: 62%; clays: 10%). The plot is cultivated with nectarines, a fruit 

of great agricultural importance in this region due to its high commercial demand and the 

favorable conditions for cultivation in this type of soil and climate. 

 

Figure 1. Location of the experimental farm in ‘Almunia de Doña Godina’. 

According to the Köppen climate classification, the climate in this area is defined as 

continental Mediterranean (Ds) and is characterized by hot and dry summers with cold 

and relatively wet winters. The mean annual precipitation during the 4-year study period 

was 378.95 mm, and the mean annual temperature was 16.1 °C. Both had considerable 

seasonal variability (Figure 2). 

 

Figure 2. Mean monthly temperature and precipitation in the study plot from 2020 to 2023. Source: 

Agroclimatic Information System for Irrigation (RED SAIR). 

This region has a clear seasonal pattern of temperature. Temperatures are high dur-

ing the summer (June–August), with the average summer temperature near 25 °C, and are 

0

20

40

60

80

100

120

0

5

10

15

20

25

30

35

40

S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S

P
re

ci
p

it
at

io
n

 (
m

m
)

Te
m

p
er

at
u

re
 (

°C
)

2020                        2021                          2022                             2023

Precipitation Temperature

Figure 1. Location of the experimental farm in ‘Almunia de Doña Godina’.

According to the Köppen climate classification, the climate in this area is defined as
continental Mediterranean (Ds) and is characterized by hot and dry summers with cold
and relatively wet winters. The mean annual precipitation during the 4-year study period
was 378.95 mm, and the mean annual temperature was 16.1 ◦C. Both had considerable
seasonal variability (Figure 2).
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Figure 2. Mean monthly temperature and precipitation in the study plot from 2020 to 2023. Source:
Agroclimatic Information System for Irrigation (RED SAIR).

This region has a clear seasonal pattern of temperature. Temperatures are high during
the summer (June–August), with the average summer temperature near 25 ◦C, and are low
during the winter (December–February), with the average winter temperature below 10 ◦C.
Precipitation has greater intra- and inter-annual variability. There are typically significant
maxima during the winter and spring months, but no significant decreases during the
summer.
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2.2. Experimental Design

The study was performed from 2020 to 2023 in an experimental plot with a total area
of 4.6 ha, cultivated with adult nectarines (Prunus persica var. nectarina). Two distinct zones
were established within this plot: in the MCC LivinGro® zone, an herbaceous mixture was
plated between the rows of trees; in the control zone (C), there was no addition of the MCC
and no spontaneous vegetation (Figure 3).
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Figure 3. Experimental design. Control: bare soil with removal of spontaneous vegetation; MCC: multifunc-
tional cover crop; A: treeline; B: inter-row (paths for farm vehicles).

The MCC LivinGro® product consisted of a mixture of seeds of Chrysanthemum ssp.
(3%), Coriandrum sativum L. (10%), Eruca vesicaria (L.) Cav. (5%), Melilotus officinalis (L.) Pall.
(8%), Onobrychis viciaefolia Scop. (22%), Salvia pratensis L. (10%), Trifolium vesiculosum Savi
(4%), and Vicia sativa L. (30%). This mixture was sown manually (15 kg/ha) and using
an electric seed drill with air distribution after soil preparation using a flail mower, and
the seeds were subsequently covered using a drag harrow. The three rows planted with
the MCC were mowed and replanted each year during the autumn. The three rows that
received the conventional (control) treatment were kept free of cover crops and weeds
using standard agricultural practices (residual herbicide at the beginning of the season and
mechanical weed maintenance during the season to remove spontaneous vegetation).

2.3. Sampling and Analysis of Soil Properties

Soil samples from the MCC zone and control zone were collected every 2 months
from September 2020 to September 2023 (36 months). On each of the 16 sampling dates,
12 samples (1 kg each) were taken from the 6 inter-rows (3 MCC and 3 control), and
12 (100 cm3 cylinders) were taken from the 6 treelines (3 MCC and 3 control) to a depth of
20 cm, for a total of 192 samples.

For analysis, the data from the 16 sampling dates were pooled into 6 different
periods defined by wet seasons (October–April) and dry seasons (May–September):
Period 1, October 2020–April 2021; Period 2, May 2021–September 2021; Period 3,
October 2021–April 2022; Period 4, May 2022–September 2022; Period 5, October
2022–April 2023; and Period 6, May 2023–September 2023.
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After collection, seven soil indicators were analyzed in the laboratory: (i) SOM, using
the Walkley-Black method of oxidation with dichromate and subsequent titration [23,24];
(ii) BSR, using incubation in a portable gas analyzer (PBI Dansensor Check Mate 3) [25];
(iii) NO3

− content according to ISO/TS 14256-1 (2003); (iv) TP percentage, using an air
pycnometer (Eijkelkamp 08. 60); (v) TN, using the Dumas method with a TruSpec macro
CHNS Elemental Analyzer (Leco); (vi) BD, from the ratio of dry soil mass (solid phase and
pores) to soil volume; and (vii) AWC, from water holding capacity using pressure pots with
PF Richards extractor plates.

2.4. Statistical Analysis

ANOVA was used to compare the significance of differences in soil quality indicators
from independent samples of the two groups, and Levene’s test was used to determine
the equality of variances. Based on a post hoc test (Tukey’s test or Games-Howell test),
a p-value ≤ 0.05 was considered significant, and a p-value ≤ 0.01 was considered highly
significant. Statistical analysis was carried out using the IBM SPSS Statistics software
version 28.0 package (IBM Corp., Armonk, NY, USA, 2017) with corporate license of the
University of Malaga for Windows

3. Results
We examined seven indicators of soil quality to compare the effects of an MCC treat-

ment with conventional (control) treatment from 2020 to 2023. The seasonal changes in
many of these indicators can be attributed to the seasonal variability of precipitation and
temperature in this Mediterranean region.

In general, the MCC zone had greater levels of SOM in the treelines and inter-rows
(Figure 4). In the treelines, these differences were significant during Period 1 (6.23 ± 0.13%
vs. 3.81 ± 0.66%), Period 3 (5.27 ± 0.50% vs. 3.67 ± 0.59%), Period 4 (3.45 ± 0.10% vs.
2.18 ± 0.09%), and Period 6 (5.61 ± 0.69% vs. 2.88 ± 0.29%). In the inter-rows, these
differences were significant during Period 1 (5.81 ± 0.90% vs. 3.93 ± 0.74%), Period 3
(5.67 ± 0.65% vs. 2.93 ± 0.44%), Period 4 (5.06 ± 0.71% vs. 4.2 ± 0.02%), and Period 5
(6.12 ± 0.97% vs. 3.92 ± 0.97%).

Our measurements of BSR (Figure 5) also showed that the MCC zone generally had
greater microbial activity in the treelines and inter-rows. In the treelines, these differences
were significant during Period 4 (32.16 ± 9.21 vs. 15.14 ± 4.77 mg CO2/kg soil) and
Period 6 (134.00 ± 12.13 vs. 42.45 ± 7.45 mg CO2/kg soil). Although the differences
during other periods were not significant, all the values were greater in the MCC zone.
In the inter-rows, these differences were significant during Period 1 (101.48 ± 5.88 vs.
44.37 ± 2.85 mg CO2/kg soil), Period 2 (58.84 ± 12.48 vs. 33.94 ± 7.56 mg CO2/kg soil),
Period 3 (48.52 ± 1.35 vs. 25.02 ± 5.88 mg CO2/kg soil), and Period 5 (73.41 ± 9.69 vs.
49.06 ± 7.81 mg CO2/kg soil).

The TN content was also generally greater in the MCC zone of the treelines and
inter-rows (Figure 6). Specifically, in the treelines, the TN was significantly greater during
Period 4 (0.19 ± 0.06% vs. 0.09 ± 0.02%), Period 5 (0.43 ± 0.02% vs. 0.20 ± 0.02%), and
Period 6 (0.54 ± 0.05% vs. 0.20 ± 0.03%). Interestingly, the differences were smaller and
not significantly different during the first three periods. In the inter-rows, the TN was
significantly greater during Period 1 (0.25 ± 0.03% vs. 0.12 ± 0.06%), Period 2 (0.18 ± 0.01%
vs. 0.08 ± 0.01%), Period 3 (0.29 ± 0.07% vs. 0.14 ± 0.04%), Period 4 (0.23 ± 0.06% vs.
0.11 ± 0.01%), and Period 6 (0.37 ± 0.03% vs. 0.11 ± 0.01%). Importantly, the differences
between the MCC zone and control zone were larger in the treelines than in the inter-rows
during Periods 5 and 6.
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Our measurements of NO3
− (Figure 7) also showed generally greater levels in the

MCC zone of the treelines and inter-rows. In the treelines, these differences were signif-
icant during Period 2 (189.12 ± 35.23 vs. 23.58 ± 4.80 mg NO3

−/kg soil) and Period 3
(64.77 ± 19.80 vs. 8.61 ± 2.36 mg NO3

−/kg soil). In the inter-rows, the difference was
only significant during Period 6 (330.82 ± 16.60 vs. 273.78 ± 31.72 mg NO3

−/kg soil).
These results indicate that the seasonal changes in NO3

− were similar in the treelines and
inter-rows. Moreover, the MCC zone and control zone had greater differences in TN than
in NO3

−.
Our measurements of the TP (Figure 8) showed that this indicator was significantly

greater in the MCC zone of treelines during Period 1 (39.75 ± 3.28% vs. 32.16 ± 2.56%),
Period 2 (48.44 ± 1.81% vs. 44.67 ± 2.18%), and Period 5 (45.87 ± 2.85 vs. 40.71 ± 1.25%).
The TP was also significantly greater in the MCC zone of the inter-rows during the same
three periods (Period 1: 38.77 ± 2.77% vs. 34.00 ± 1.09%; Period 2 (50.00 ± 1.22% vs.
43.57 ± 2.43%; Period 5: 48.22 ± 3.77% vs. 48.11 ± 2.20%). Notably, the TP also increased
over time (from Period 1 to Period 6) in the treelines and inter-rows, given that the initial
values were about 40% and the final values in the MCC zone were over 50% (treelines:
53.75 ± 2.87%; inter-rows: 51.8 ± 2.16%). There was also a tendency for a higher average
TP in the MCC zone of the treelines during Periods 1, 3, and 5 compared to Periods 2, 4,
and 6, indicating a seasonal effect. On the other hand, in inter-rows, there were greater
increasing tendencies between the MCC and the control with slight statistical differences
with respect to the treeline, therefore showing a greater impact in this location.

We also measured changes in BD from October 2020 to September 2023 (Figure 9).
The results indicated no significant differences in any of the pairwise comparisons of the
MCC zone and control zone. However, in the treelines, the MCC zone had slightly lower
BD values during Periods 1, 2, 3, 4, and 5. In the inter-rows, the MCC zone had lower BD
values during Periods 1, 2, 3, 4, and 6. These results suggest that the application of the
MCC decreased soil compaction more in the inter-rows than in the treelines.
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We measured AWC over two years, from October 2021 to September 2023 (Figure 10).
For the treelines, there were significantly greater AWC values in the MCC zone during
Period 3 (17.47 ± 0.36% vs. 14.20 ± 0.82%) and Period 5 (24.39 ± 0.06% vs. 13.95 ± 2.50%).
For the inter-rows, there was a significant increase in the MCC zone only during Period 6
(21.64 ± 2.65% vs. 12.57 ± 1.27%). In addition, although all measurements of AWC were
greater in the MCC zone, the differences were greater during wet months in the treelines,
but were greater during the dry months in the inter-rows. This suggests that the effect of
the MCC depends on the season and location.
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2023; P6: Period 6, May 2023–September 2023. b *, p ≤ 0.05; b **, p ≤ 0.01; a, no significant difference.



Land 2025, 14, 27 8 of 15
Land 2025, 14, x FOR PEER REVIEW 9 of 18 
 

 

Figure 7. Changes in NO3− in the MCC and control zone in the treelines (A) and inter-rows (B) from 

2020 to 2023. P1: Period 1, October 2020–April 2021; P2: Period 2, May 2021–September 2021; P3: 

Period 3, October 2021–April 2022; P4: Period 4, May 2022–September 2022; P5: Period 5, October 

2022–April 2023; P6: Period 6, May 2023–September 2023. b *, p ≤ 0.05; b **, p ≤ 0.01; a, no significant 

difference. 

Our measurements of the TP (Figure 8) showed that this indicator was significantly 

greater in the MCC zone of treelines during Period 1 (39.75 ± 3.28% vs. 32.16 ± 2.56%), 

Period 2 (48.44 ± 1.81% vs. 44.67 ± 2.18%), and Period 5 (45.87 ± 2.85 vs. 40.71 ± 1.25%). The 

TP was also significantly greater in the MCC zone of the inter-rows during the same three 

periods (Period 1: 38.77 ± 2.77% vs. 34.00 ± 1.09%; Period 2 (50.00 ± 1.22% vs. 43.57 ± 2.43%; 

Period 5: 48.22 ± 3.77% vs. 48.11 ± 2.20%). Notably, the TP also increased over time (from 

Period 1 to Period 6) in the treelines and inter-rows, given that the initial values were 

about 40% and the final values in the MCC zone were over 50% (treelines: 53.75 ± 2.87%; 

inter-rows: 51.8 ± 2.16%). There was also a tendency for a higher average TP in the MCC 

zone of the treelines during Periods 1, 3, and 5 compared to Periods 2, 4, and 6, indicating 

a seasonal effect. On the other hand, in inter-rows, there were greater increasing tenden-

cies between the MCC and the control with slight statistical differences with respect to the 

treeline, therefore showing a greater impact in this location. 

 

Figure 7. Changes in NO3
− in the MCC and control zone in the treelines (A) and inter-rows (B) from 2020

to 2023. P1: Period 1, October 2020–April 2021; P2: Period 2, May 2021–September 2021; P3: Period 3,
October 2021–April 2022; P4: Period 4, May 2022–September 2022; P5: Period 5, October 2022–April
2023; P6: Period 6, May 2023–September 2023. b *, p ≤ 0.05; b **, p ≤ 0.01; a, no significant difference.

Land 2025, 14, x FOR PEER REVIEW 10 of 18 
 

 

Figure 8. Changes in TP in the MCC and control zone in the treelines (A) and inter-rows (B) from 

2020 to 2023. P1: Period 1, October 2020–April 2021; P2: Period 2, May 2021–September 2021; P3: 

Period 3, October 2021–April 2022; P4: Period 4, May 2022–September 2022; P5: Period 5, October 

2022–April 2023; P6: Period 6, May 2023–September 2023. b *, p ≤ 0.05; b **, p ≤ 0.01; a, no significant 

difference.  

We also measured changes in BD from October 2020 to September 2023 (Figure 9). 

The results indicated no significant differences in any of the pairwise comparisons of the 

MCC zone and control zone. However, in the treelines, the MCC zone had slightly lower 

BD values during Periods 1, 2, 3, 4, and 5. In the inter-rows, the MCC zone had lower BD 

values during Periods 1, 2, 3, 4, and 6. These results suggest that the application of the 

MCC decreased soil compaction more in the inter-rows than in the treelines. 

Figure 8. Changes in TP in the MCC and control zone in the treelines (A) and inter-rows (B) from 2020
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October 2021–April 2022; P4: Period 4, May 2022–September 2022; P5: Period 5, October 2022–April
2023; P6: Period 6, May 2023–September 2023. b *, p ≤ 0.05; b **, p ≤ 0.01; a, no significant difference.
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October 2021–April 2022; P4: Period 4, May 2022–September 2022; P5: Period 5, October 2022–April
2023; P6: Period 6, May 2023–September 2023. b *, p ≤ 0.05; a, no significant difference.
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significant difference.
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4. Discussion
This study was a spatiotemporal evaluation of the effect of a specific MCC (LivinGro®)

on various physicochemical, hydrological, and microbiological indicators relevant to as-
sess soil quality in an agricultural region that has a continental Mediterranean climate.
This evaluation is essential for understanding the impact of agricultural practice on soil,
a topic widely recognized within the scientific community [26,27]. In this case, a con-
ventional (control) treatment was compared with the MCC treatment based on seven
different key indicators of soil quality in the treelines and inter-rows of a nectarine or-
chard. First, the results obtained showed that relative to the control treatment, the MCC
increased SOM by 2.01% in the treelines and 2.46% in the inter-rows. This increase was
also affected by seasonal rainfall in the study area, although the effect of season on SOM
was less pronounced in the treelines [28]. SOM is considered one of the main indicators
of soil quality, and a higher value corresponds to multiple benefits related to increased
nutrient availability [29,30]. Our findings regarding this indicator align with those of
Hao et al. [9], who concluded that application of a cover crop increased the average level
of organic matter among all their study plots by 10.7%. Similarly, Demir and Işık [31] and
Haruna et al. [32] reported that a cover crop led to a 0.73% annual increase of SOM relative
to the conventional method. Several additional studies also found that SOM increased
after the introduction of cover crops [33–35]. De Torres et al. [36] showed that the residue
from a MCC helped to maintain or increase soil fertility in a Mediterranean olive grove
in Córdoba, Spain. Amaral et al. [37] also studied the effects of a cover crop on organic
carbon and microbial biomass compared to a conventional treatment in which herbicides
were used to control plant growth in the control regions (as in the present study). They
concluded that the cover crop led to better soil quality than the control.

The BSR is considered an essential indicator of microbial activity as well as soil health
and quality, as it reflects the metabolic activity of soil microorganisms. An increase in
this indicator reflects higher microbial activity and a biologically more active soil [38,39].
Additionally, TN plays a fundamental role in soil function because nitrogen is an essential
nutrient for plant growth and development [40]. Nitrogen is an essential component
of chlorophyll and amino acids, and it also increases the availability of other essential
nutrients in the soil [41]. Our results confirmed that the MCC led to increases in BSR
and TN, and that these two indicators had similar dynamics throughout the study period,
indicating a relationship between microbial activity and TN in the soil. This relationship
was particularly notable during the wet seasons, such as Period 1 (MCC: 101.48 ± 5.88
mg CO2; control: 44.37 ± 2.85 mg CO2). However, the MCC also had a large effect on
BSR during Period 6, and this was likely due to the significant precipitation of June 2023.
Moisture and temperature are key factors that regulate microbial activity (BSR) throughout
the year. Specifically, greater water availability in the soil creates better conditions for
microorganisms and increases their access to nutrients [42,43]. Our results align with the
results of Mbutia et al. [44] and highlight the value of incorporating a MCC to increase
microbial activity and the storage of carbon and TN in the soil. Demir [45] asserted
that MCC-based treatments improved the chemical properties of the soil, especially BSR.
These effects were most evident in the upper 20 cm of soil, a region with a significant
improvement of BSR in the MCC zone (41.5 mg CO2/kg soil) compared to the control zone
(12.5 mg CO2/kg soil). These changes in BSR occurred in parallel with changes in TN.
However, this previous study emphasized the variability in results due to the use of
different plant species. Based on these results, it can be concluded that the implementation
of MCC has led to a significant increase in this key microbiological soil indicator [46]. This
increase indicates that MCC contributes to the input of organic residues into the soil, which
promotes an acceleration of the decomposition of SOM [47]. Furthermore, it enhances
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nutrient cycling and increases the availability of TN in the soil for the main crop [48]. It
is associated with a higher active microbial biomass, reinforcing its role in enhancing soil
quality and functionality [49].

TP is another key indicator of soil quality due to its relationship with various vital
processes that are related to soil structure, microbial activity, and the water cycle [50,51].
We found that introduction of a MCC increased the TP by 3.89% in the inter-row area and
3.49% in the treelines, compared to the control. This increase is presumably related to
improvements in soil structure, water retention, and soil fertility [32]. A MCC can promote
root development and serve as a protective medium for the prevention of soil erosion [52].
Similarly, BD is a key indicator of soil compaction [53]. Although there were no significant
differences in our pairwise comparisons of the MCC zone and control zone, the BD was
consistently lower in the MCC zone than in the control zone (0.11 g/cm3 lower in the
treelines and 0.19 g/cm3 lower in the inter-rows). This indicates that the MCC decreased
soil compaction and improved soil structure. These results are consistent with the studies of
Pott et al. [54] demonstrating that the implementation of MCC improved the soil’s physical
properties. Specifically, they observed a reduction in BD of more than 5% and an increase
in soil air-filled porosity at −100 hPa (0.0–0.2 m) of up to 27%. Similarly, Klopp et al. [55]
determined winter rye cover crop reduced field BD by 5% (0 to 15 cm depth).

On the other hand, we found that the effects of the MCC on AWC were similar to
its effects on TP and BD [56]. The average AWC the MCC zone was 2.71% greater in the
treelines and 3.65% greater in the inter-rows, relative to the control zone. A higher AWC
indicates greater water availability and improved growth and development of plants. Our
results are consistent with multiple previous studies. For example, Hao et al. [9] concluded
that the application of a MCC improved TP by an average of 2.6% among 153 agricultural
plots and increased useful water content in the soil by an average of 12.2% in 59 plots.
Demir and Işık [28] and Haruna et al. [29] reported that a MCC increased the TP and led to
greater structural stability and water storage capacity of soils. Therefore, the increase in TP,
coupled with the decrease in BD and the increase in AWC in the soil, results in enhanced
aeration capacity [54,57] as well as improved water infiltration and retention [58]. This
result creates better conditions for increased microbial activity, as indicated by a higher
BSR [59]. On the other hand, Chen et al. [60] argued that an additional benefit of cover
crops may be that they promote biodiversity.

5. Conclusions
The results of this study demonstrated that the introduction of a MCC was an effec-

tive method for improving soil quality in a nectarine orchard located in a region with a
continental Mediterranean climate. More specifically, the MCC led to significant increases
in soil organic matter of 2.01% in treelines and 2.46% in inter-rows. It also led to increases
in basal respiration, total nitrogen, total porosity, and available water content compared
to the control (conventional) treatment. The MCC also led to a decreased BD, reflecting
decreased soil compaction.

A main result of our study is that the introduction of a MCC in the inter-row area
between nectarine trees in our agricultural plot led to multiple benefits for the agricultural
soils. These benefits include enhanced soil fertility, as indicated by the increases in SOM,
TN, and NO3

−. We also observed an increase in microbial activity, suggesting greater
microbial biodiversity in the surface layer of the soil. The MCC also improved soil structure,
manifesting as an increase of TP and a decrease of BD. This improvement in soil structure
also led to greater availability of water (AWC). A second important finding of our study is
that the benefits of the MCC depended on the season. There were larger increases in the
BSR and SOM during the wet season (October–April) than the dry season (May–September).
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Finally, we conclude that the MCC enhances soil quality indicators, with a positive impact
on both inter-rows and treelines. Greater improvements were observed in the inter-rows,
as this is the area where the MCC cultivation was directly applied. Furthermore, these
improvements in the physicochemical indicators of the soil have resulted in greater nutrient
availability, promoting increased microbial activity in the soil, as evidenced by basal
respiration as a key microbiological indicator.
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